Load cohort information and Seurat object containing all identified cell types.
p4 = DimPlot(aux.seurat,
reduction = "umap",
raster=FALSE,
group.by = "Major.Class",
pt.size = .1,
split.by = 'Major.Class',
cols = c("Endometrioma" = "#7b3294",
"Eutopic Endometrium" = "#c2a5cf",
"Endometriosis" = "#d9f0d3",
"No endometriosis detected" = "#a6dba0",
"Unaffected ovary" = "#008837"))
p4
cluster.cols = c("#9e0142", "#d53e48", "#f46d43", "#fdae61", "#ffffbf", "#e6f598", "#abdda4", "#66c2a5", "#3288bd")
p4 = DimPlot(object = aux.seurat,
pt.size = 0.1,
raster=FALSE,
group.by = "active.cluster",
cols = cluster.cols,
label = T)
p4
umap_1 <- aux.seurat[["umap"]]@cell.embeddings[,1]
umap_2 <- aux.seurat[["umap"]]@cell.embeddings[,2]
umap_3 <- aux.seurat[["umap"]]@cell.embeddings[,3]
plot.data <- FetchData(object = aux.seurat, vars = c("UMAP_1", "UMAP_2", "UMAP_3", "active.cluster"))
plot.data$label <- paste(rownames(plot.data))
plot_ly(data = plot.data,
x = ~UMAP_1, y = ~UMAP_2, z = ~UMAP_3,
color = ~active.cluster,
colors = cluster.cols,
type = "scatter3d",
mode = "markers",
marker = list(size = 2, width=1),
text=~active.cluster,
hoverinfo="text")